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Abstract

With short production development times, there is an increased need to demonstrate product 
reliability relatively quickly with minimal testing. In such cases there may be few if any 
observed failures. Thus, it may be difficult to assess reliability using the traditional reliability test 
plans that measure only time (or cycles) to failure. For many components, degradation measures 
will contain important information about performance and reliability. These measures can be 
used to design a minimal test plan, in terms of number of units placed on test and duration of the 
test, necessary to demonstrate a reliability goal. Generally, the assumption is made that the error 
associated with a degradation measure follows a known distribution, usually normal, although in 
practice cases may arise where that assumption is not valid. In this paper, we examine such 
degradation measures, both simulated and real, and present non-parametric methods to 
demonstrate reliability and to develop reliability test plans for the future production of 
components with this form of degradation.
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1. INTRODUCTION

Often it is difficult to assess component reliability using traditional methods due to a lack of 
observed failures. For many such components, degradation measures, observed over time, will 
contain important information about performance and reliability. These measures can be used to 
predict remaining time to failure and to estimate the overall reliability distribution for that 
component. Degradation measures are inherent in situations where failure occurs due to a 
process of accumulation of damage. In mechanical systems, the failure (breakage of some part) 
may be caused by the impact of a peak load. The amount of accumulated wear or fatigue damage 
plays the role of the degradation measure. There are also failures in electronic parts (such as a 
short circuit, dielectric breakdown, breaking of a circuit, etc.) which are speeded up by some 
gradual process of deterioration, e.g. corrosion, mechanical deformation, chemical reactions and 
so on. Metrics on these processes all serve as degradation measures. Reference [1], [2] and [3] all 
discuss important aspects of degradation data and reliability estimation using degradation data. 

Although in many cases it is reasonable to assume that the data follow a known statistical 
distribution, in practice situations arise where such an assumption is inappropriate. To combat 
this, we turn to non-parametric methods, such as simple bootstrapping or smooth bootstrapping, 
To make the model fitting technique robust to outliers, we apply median regression.

The purpose of this paper is to present a robust reliability test plan methodology along with case 
studies that rely on a degradation measure rather than time to failure data. We will adapt the 
methods developed in [4] to robustly estimate a reliability distribution using degradation 
measures. The methods will be applied to estimating the reliability of an electrical component 
using historical degradation data. Bootstrapping simulation techniques will then be used to 
investigate minimum sample size requirements and test duration necessary to demonstrate a 
reliability goal. It will be shown that test plans designed using this approach may require far less 
testing than traditional reliability test plans. The test plans developed can be used to demonstrate 
the reliability of future production of this component.

1.1. Degradation Measures

1.1.1. Assumptions
Several assumptions are usually made regarding a degradation measure:

1. The state (health) of the component can be characterized by a randomly changing time-
dependent variable that we will denote . yt

2. A failure of the component is defined as a certain catastrophic event (“hard” failure) whose 
probability of occurrence depends on the value of the variable , or is defined as the variable yt

 entering some critical region (“soft” failure). yt

3. The variable  is accessible for either continuous or discrete observations, i.e. a degradation yt

“path” is obtainable. 
4. The probabilistic laws governing the changes in the degradation measure  are known yt

(physical model) or can be approximated (empirical model). 
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Under these assumptions  is called a degradation measure. Component tests in which yt

degradation data are collected provide, for each unit tested, data consisting of an observed path 
of degradation measurements (either discrete or continuous) over time. The observed degradation 
path is a unit’s actual degradation path, a monotonic function of time, plus some measurement 
error. Note also that “time” could be in units of real time or other units such as number of cycles 
or amount of usage. The path may be censored if the unit is taken off test before failure occurs or 
it may include the entire degradation path to the point of failure.

An accurate degradation model can be used to show that failure probability is small when the 
degradation variable is far from the critical region. With censored data, reliability can then be 
measured in terms of the distance of the degradation measure from the critical region. This is 
especially important with high reliability products, because high reliability goals can then be 
demonstrated with less testing than would be required using just time to failure (including 
censoring times) data. This advantage of degradation data will be exploited in designing a 
minimal reliability test plan in which no failures may be observed.

1.1.2. Estimating Reliability with a Degradation Measure
The procedure that we will use to estimate reliability using a degradation measure follows that 
given in [1] and [2]. The steps are:

1. Fit a general path model to each of the  sample degradation paths. Least squares n
estimation can be used to estimate the parameters for each path.
2. Determine the statistical distribution (using the estimates from the  sample paths) of n
each of the random parameters from the general path model.
3. Use the resulting distributions to solve for the time to failure distribution FT(t) if a close 
form expression exists.
4. If no closed form expression for FT(t) exists, use the parameter distributions from (2) to 
simulate a large number  of random degradation paths.N
5. To estimate FT(t), compute the proportion of random paths generated in (3) that cross a 
pre-determined critical level (which defines failure) before time t. That proportion is the 
estimate of FT(t).

To quantify the uncertainty associated with the estimate of FT(t) we used a slightly different 
method than in [1]. The proposed procedure that we investigated is:

1. Choose a bootstrap sample (sampling with replacement) of  degradation paths from the n
original  sample paths.n
2. Repeat steps 1-5 from the estimation procedure above to obtain an estimate of FT(t).
3. Repeat steps 1 and 2 here many times (say 1000) to obtain a distribution of values for 
FT(t). The central (100- )% of this distribution defines a (100- )% confidence interval for  
FT(t).
4. This interval becomes the uncertainty interval for FT(t).
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These confidence intervals are constructed using the bootstrap percentile method discussed in 
[5]. Sensitivity to sample size was determined by varying the size  of the number of degradation n
paths in (1). Sensitivity to the length of the test (number of cycles of each degradation path 
observed) was determined by truncating the original sample paths at various points and 
performing the estimation and uncertainty analyses above using the truncated paths.

1.2. Statistical Methods

Our goal is to design reliability test plans that are robust with respect to both outliers and to 
underlying distribution. We will focus on median regression and kernel density estimation, two 
non-parametric statistical methods.

1.2.1. Median Regression

Median regression is the estimation of the median of a response variable conditioned on some 
input variable or variables. That is, rather than the more common least-squares regression, the 
conditional median is estimated rather than the conditional mean. To find the estimated 
coefficients of the median regression line, , the following equation is solved:β̂ .5

β̂ .5 = arg min
β ̂ Rk

n

∑
i = 1

|Yi - Xiβ|

This may be more recognizable to some as quantile regression with .[6] Although the τ = 0.5
concept of median regression has existed for centuries, it has only seen widespread usage since 
the advent of computers, as solving this minimization requires much more complicated 
numerical techniques than least squares. However, median regression does have a useful 
advantage to least squares regression in that it is considered to be robust to outliers. That is, the 
estimates found in median regression are less affected by the presence of outliers than those 
found in least squares regression. By using median regression to model degradation paths, we 
then increase robustness to any outliers found in the individual degradation paths. Median 
regression is also a non-parametric statistical method, meaning that no assumption is being made 
about the distribution of the residuals from the fitted equation. This allows for improved 
estimation of the conditional median in the presence of, for example, skewed residuals.

In this paper, all degradation paths are assumed to be well-approximated by a linear model. That 
is, we use the model

yij = β0i + β1ixij + ̂ij,

where  and  represent the intercept and slope of unit ,  is the th observation of the output β0i β1i i yij j

of unit at time , and  is the random error at the th observation of the output of unit . i xij ̂ij j i
However, as with least squares, median regression extends to other path models.
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1.2.2. Kernel Density Estimation

Kernel density estimation, or KDE, is a useful method to estimate the probability density 
function of a collection of data that comes from an unknown distribution. If we are to estimate 
the probability density function, , of independent, identically distributed data, , f(x) x1,x2, …,xn

comes from, the KDE can be expressed as:

f̂ h(x) =
1
n

n

∑
i = 1

Kh(x - xi),

where  is the chosen kernel and  is the selected bandwidth. Kernel density estimation Kh(z) h
results in a smooth density function from which we can make inferences about the population. 
Although there are several options for kernels, in this paper the kernel is considered to be 
Normal (Gaussian). There are also several selection criteria for the bandwidth. After performing 
a simulation study, we chose the selection method proposed by Sheather and Jones [7] for this 
paper.
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2. METHODOLOGY

In order to improve robustness to outliers and to distributional assumptions, we modify the 
algorithm in Section 1.1.2 to incorporate the non-parametric statistical methods found in Section 
1.2. To do so, we first use median regression (instead of least squares regression) in Step 1. This 
allows our fitted degradation paths to be more robust to random errors and to estimate the 
degradation path with non-Normal residuals. From the parameter estimates found in Step 1, we 
no longer try to determine the distribution of the random coefficients. Instead, assuming the 
slope and intercept coefficients are independent, we fit a univariate KDE to each set of estimated 
coefficients in Step 2. We then simulate from these KDEs the coefficients needed to perform 
Step 4 and use the simulated degradation paths to estimate the failure distribution FT(t) in Step 5. 
Simulating from the KDEs in this fashion is sometimes known as “smooth bootstrapping.” Thus, 
our new steps are as follows:

1. Fit a general path model to each of the  sample degradation paths. Median regression is used n
to estimate the parameters for each path.

2. Fit a KDE to each of the empirical parameter distributions from the general path model.
3. Use the KDEs from (2) to simulate a large number  of random degradation paths.N
4. To estimate FT(t), compute the proportion of random paths generated in (3) that cross a pre-

determined critical level (which defines failure) before time t. That proportion is the non-
parametric estimate of FT(t).

The uncertainty quantification algorithm remains the same as before. It is also possible to simply 
use bootstrapping from the random parameter estimates to simulate a large number of random 
degradation paths, effectively skipping Step 2. This obtains similar results to the smooth 
bootstrapping, particularly in large samples. Some comparisons of these methods can be found in 
Sections 3 and 4.

If the sample slope and intercept estimates appear to be correlated, then we can instead fit a 
bivariate KDE to the joint set of estimated coefficients. The coefficients for the simulated 
random degradation paths would then be drawn from this bivariate KDE. However, for the 
examples in this paper, the coefficients are either assumed or designed to be independent.
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3. SIMULATED DATA ANALYSIS

To provide examples of situations where our added robustness to distributional assumption adds 
value to the previous methodology, we look at two simulated examples. In each case, the slopes 
of the degradation paths are randomly selected from a Normal distribution, as are the random 
errors along each path. However, the intercepts are randomly selected from non-normal 
distributions.

For the purpose of reliability test planning, we also are interested in the effects that test duration 
and of observed units on test have on failure probability estimates and their associated 
uncertainties. By taking into account these effects, we can to design minimal robust reliability 
test plans.

3.1. Skewed Intercept Distribution

First, we look at degradation paths whose intercepts are randomly drawn from a skewed 
distribution. In Figure 1, the 50 simulated degradation paths used in the analysis are shown on 
the left. A lower failure limit of 20 is also given. On the right, a KDE plot of 100,000 points of 
data simulated from the skewed distribution is shown, along with a Normal distributional fit. 
This fit places too much probability in the right-most tail, meaning that when simulating from 
this distribution, we would often see larger intercept values than expected.

Figure 1. On the left, a plot of 50 simulated degradation paths with intercepts drawn from 
a skewed distribution. On right, a KDE plot of 100,000 points of data simulated from the 

same distribution that was used for the intercept of the random paths. 

Because there are more large intercept values than expected, the failure probability tends to be 
underestimated. In Figure 2, on the left we see the estimated cumulative distribution functions 
(CDFs) for cycles to failure for the Normal distribution method, the simple bootstrap method, 
and the KDE bootstrap method. Also, 90% confidence intervals are also shown for each of the 
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CDFs. If, for example, we are looking for a reliability goal of 0.95 with 95% confidence, we 
would look to where the upper bound of the 90% confidence interval crosses the 0.05 value. As 
we can see on the left plot of Figure 1, the reliability estimates with 95% confidence are about 20 
cycles apart between the KDE bootstrap method and the Normal distribution method, with the 
Normal method underestimating the failure probability, as expected. In fact, when we compare 
the expected values for these degradation paths via simulation, we see that the expected values 
for both the KDE bootstrap and the simple bootstrap methods are close to the true theoretic 
values while the Normal distribution method differs. This comparison can be found on the right 
in Figure 2.

Figure 2. On the left, CDF estimates for the 50 simulated degradation paths found in 
Figure 1 with 90% confidence intervals for the smooth bootstrap (KDE) method, the 

standard bootstrap method, and the Normal distribution method. The point where the 
confidence interval first touches the 0.05 reliability point is marked with a vertical line. 
On the right, the expected failure distribution estimate for each of the three methods.

3.2. Bimodal Intercept Distribution

We also look at degradation paths whose intercepts are from a bimodal intercept. In Figure 3, the 
50 simulated degradation paths are shown on the left and the bimodal distribution they come 
from is on the right. On the right-most plot, a Normal distribution fit is also shown. We see that 
in this scenario, a large amount of probability is placed in the region between the two modes, 
meaning that if we were to simulate from the normal distribution, we would obtain a large 
number of simulated data points from low probability regions. This will affect both our failure 
probability estimates as well as the uncertainty about those estimates.
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Figure 3. On left, plot of 50 simulated degradation paths with intercepts drawn from a 
skewed distribution. On right, KDE plot of 100000 points of data simulated from the same 

distribution that was used for the intercept of the random paths. 

As before, we can look at what effect this type of distribution has on our failure probability 
estimates. On the left in Figure 4, we see that the Normal distribution estimate is noticeably 
different than either the simple bootstrap or KDE bootstrap estimates and the uncertainty around 
its estimate is larger than the uncertainty around the other two estimates. On the right in Figure 4, 
we see the expected values for the estimates from each method. Again, we see that the KDE 
bootstrap and simple bootstrap estimates are very close to the theoretic values while the normal 
approximation gives a poor estimate.

3.3. Effects of Test Duration and Sample Size

There are several parameters that can affect the CDF estimate of cycles to failure, including the 
duration of the test, sample size, time between tests, performance limit, and confidence level. In 
this paper, we look specifically at the effects of test duration and sample size on the CDF and its 
associated uncertainties. These effects will be used to determine minimal reliability test plans.

3.3.1. Test Duration

We simulated 50 degradation paths with slope, intercept, and random errors simulated from 
Normal distributions. Each of the paths was simulated for 600 use cycles with observations 
occurring every 20 cycles. To determine the effect of test duration on the estimated CDF of 
cycles to failure, we truncated the degradation paths at various cycle numbers, re-estimated the 
CDF and its uncertainties, and compared the results. In Figure 5, we see three such CDF 
estimates, with no cutoff, a 300 cycle cutoff, and a 100 cycle cutoff. The estimates change little 
between 300 cycles and all 600 cycles. However, at a certain point, the estimates begin to vary, 
as evidenced by the estimate at 100 cycles.



19

Figure 4. On the left, CDF estimates for the 50 simulated degradation paths found in 
Figure 3 with 90% confidence intervals for the smooth bootstrap (KDE) method, the 

standard bootstrap method, and the Normal distribution method. The point where the 
confidence interval first touches the 0.05 reliability point is marked with a vertical line. 
On the right, the expected failure distribution estimate for each of the three methods.

Figure 5. Comparison of CDF estimates using simulated data with a Normally distributed 
intercept and slope and 90% confidence intervals. Cycle counts include 100 cycles, 300 

cycles, and all 600 cycles.
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This is to be expected, as we know that the degradation paths follow a linear model, so we know 
that our model choice is correct. At a certain point, we have enough information from the paths 
for the estimates to stabilize. The time it takes to stabilize seems particularly dependent on the 
random error variability around the degradation paths. If the estimates do not stabilize, then 
either the units were not observed for enough cycles or the chosen path model is incorrect.

3.3.2. Sample Size

As we might expect, the number of degradation paths observed affects the uncertainty interval 
about the estimated CDF. As the sample size increases, the uncertainty decreases. This can be 
seen in Figure 6, in which we use the degradation paths from Section 3.2.1 to find our estimates. 
To find our estimates for the various sample sizes, instead of taking  samples from the original  n n
degradation paths in our uncertainty quantification algorithm, we take  samples, where  is the m m
sample size to be evaluated and . This allows us to estimate the sample size needed to obtain m ≤ n
the desired uncertainty at a given cycle time.

Figure 6. Comparison of CDF estimates using simulated data with a Normally distributed 
intercept and slope and their 90% confidence intervals for sample sizes of 10, 20, 30, 40, 

and 50 units.
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Figure 7. On the left, comparison of CDF estimates using simulated data with a Normally 
distributed intercept and slope coefficients and 300 cycles, with their 90% confidence 
intervals. Sample sizes of 10, 20, 30, 40, and 50 units are shown. On the right, we see 

CDF estimates and their 90% confidence intervals from the same degradation paths with 
more resolution at 300 cycles. Sample sizes of 10, 15, 16, 20, and 50 are shown.  

3.3.3. Designing Test Plans Based on Test Duration and Sample Size

For a given maximum failure probability, confidence level, and performance requirement, we 
can adjust the test plan parameters to obtain an optimal test plan for future component testing. 
Using the degradation paths from Section 3.2.1, we first see that we can reasonably reduce the 
number of cycles that we observe the degradation paths from 600 to 300 with little change to our 
CDF estimate and the uncertainty around it. From this, we can then vary the sample size to find 
the minimum number of needed to demonstrate the reliability requirement with the desired level 
of confidence. Figure 7 shows that with a sample size of 16 degradation paths, we can 
demonstrate a reliability requirement of 0.999 (0.001 failure probability) with 95% confidence. 
Thus, our test plan would be to place 16 of these units on test for 300 cycles.

If there are other parameters, such as duration between observations, those parameters can also 
be varied to determine values that provide an estimate that meets the reliability requirement with 
the desired level of confidence. Because this may not lead to a unique solution, it is 
recommended to select the test plan with the lowest cost.
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4. COMPONENT DATA ANALYSIS

4.1. Electrical Component Data

To demonstrate the design of a robust reliability test plan in practice, we use our methodology on 
a real-world, electrical component.

4.1.1. Data and Model Description

The data used in this case study come from the degradation of an electrical component used to 
close a high-energy circuit. A low energy pulse causes the component to discharge, forming a 
plasma at the probe, closing the high-energy circuit. The resulting plasma causes a carbon 
residue to be deposited around the probe. The degradation mechanism is the carbon buildup, and 
the degradation measure is probe resistance. As the carbon residue builds up due to repeated 
discharges, the probe resistance gradually decreases until the component fails to discharge. The 
probe resistance data for the components are given in Figure 8, with the probe response shown 
on a natural log scale.

Figure 8. Degradation paths for the 42 tested electrical components. The output is shown 
on a natural log scale.

When we fit median regression lines to each degradation path and examine the coefficient 
estimates, we obtain the histograms and KDEs in in Figure 9. As we can see, shape of the 
histograms and densities suggest that the coefficient distributions may not be Normally 
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distributed. It is worth noting that the coefficient tests do pass an Anderson-Darling test of 
Normality, however the small sample size makes it difficult to reject the assumption of 
Normality. Thus, we choose to not make an assumption about either coefficient distribution. 
When we test the slope and intercept coefficient estimates for independence, we see that the two 
sets of estimates are uncorrelated.

The initial objective of the testing was to demonstrate that this component design can be pulsed 
100 times without failure. A reliability goal of 0.995 (0.005 unreliability) at 100 pulses was 
established for this component, meaning that the desired probability of surviving at least 100 
pulses is 0.995 or greater.

The major cost associated with this test is the cost of the components, which are destroyed by 
testing to failure. Individual components may be expensive to manufacture, so any reduction of 
sample size results in significant savings. Additional costs are associated with the manpower and 
equipment required to pulse the components, so reducing the duration (number of pulses) of the 
test would also result in savings. To demonstrate the reliability goal of the component in future 
production lots, it is thus of interest to reduce both the number of components tested and the 
duration of the test. Reducing the number of pulses in this test corresponds to reducing “time on 
test” in the traditional component reliability study, an important consideration in product 
development

Figure 9. Histograms and KDEs for the coefficient estimates from the median regression 
lines fitted to the degradation paths found in Figure 8.

4.1.2. Test Plan and Analysis

To determine our reliability test plan, we first check to see if we can demonstrate that our 
estimates meet the reliability goal. In Figure 10, we see that the upper bound of our 90% 
confidence interval on the CDF estimate lies below 0.005 at 100 pulses, meaning that we have at 
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least 95% confidence that we have a cumulative probability of failure less than 0.005 at 100 
pulses. We then begin to vary the number of pulses observed to see when the estimates stabilize. 
As we can see in Figure 10, we start to see some slight changes early, at 600 and 700 pulses, and 
then a larger change at 500 pulses. We also see that at 700 pulses, we can still meet our 
reliability goal, with our upper confidence bound estimated to be 0.0047, but we are unable to 
meet our reliability goal at 600 pulses.

Because the cost of the components is the major testing cost, the decision was made to not 
reduce the pulse observation length. Simply setting the cutoff at 700 pulses did not shorten the 
observation length significantly and removed the ability to reduce the sample size, as the upper 
confidence bound was already very close to the desired cumulative probability of failure. 
Therefore, we turned our attention to reducing the sample size. In Figure 11 the estimated CDFs 
for 30 units, 35 units, and all 42 units are displayed. From this, we see that we are able to reduce 
the sample size to 35 units and still demonstrate that we meet our reliability goal. Any further 
reduction would not demonstrate that we meet our reliability goal. From all of this, our 
recommended test plan would not put a limit on observed cycle length, but reduce the sample 
size from 42 units to 35 units.

Figure 10. Comparison of CDF estimates for the electrical component using all pulses, 
700 pulses, 600 pulses, and 500 pulses. 90% confidence intervals are also shown.



25

Figure 11. Comparison of CDF estimates for the electrical component using sample sizes 
of 42, 35, and 30 units. 95% upper confidence bounds are also shown.
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5. SUMMARY AND CONCLUSIONS

In this paper, we have demonstrated, though both simulated and real examples, the use of 
applying non-parametric statistical methodologies to both estimate reliability and to develop 
minimal test plans for degradation data that does not adhere to the usual assumptions of a known 
distribution. The added robustness can give a more accurate estimate in the presence of skewness 
or a mixture of distributions. As is the case with other non-parametric methods, the increase in 
robustness comes with an increase in uncertainty. This means that in cases where a known 
distribution is a reasonable assumption for the degradation paths, using that information will 
allow for further reductions in the designed test plan. However, in practice, it is not uncommon 
to see data that does not fit any of the standard statistical distributions, making this non-
parametric approach a reasonable choice to perform reliability analysis and to develop minimal 
test plans.
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